Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Clin Pathol ; 159(2): 111-115, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-20233908

ABSTRACT

OBJECTIVES: The aim of this study is to evaluate the effectiveness of a CRISPR-based human and bacterial ribosomal RNA (rRNA) depletion kit (JUMPCODE Genomics) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shotgun metagenomic sequencing in weakly positive respiratory samples. METHODS: Shotgun metagenomics was performed on 40 respiratory specimens collected from solid organ transplant patients and deceased intensive care unit patients at UCLA Medical Center in late 2020 to early 2021. Human and bacterial rRNA depletion was performed on remnant library pools prior to sequencing by Illumina MiSeq. Data quality was analyzed using Geneious Prime, whereas the identification of SARS-CoV-2 variants and lineages was determined by Pangolin. RESULTS: The average genome coverage of the rRNA-depleted respiratory specimens increased from 72.55% to 93.71% in overall samples and from 29.3% to 83.3% in 15 samples that failed to achieve sufficient genome coverage using the standard method. Moreover, rRNA depletion enhanced genome coverage to over 85% in 11 (73.3%) of 15 low viral load samples with cycle threshold values up to 35, resulting in the identification of genotypes. CONCLUSION: The CRISPR-based human and bacterial rRNA depletion enhanced the sensitivity of SARS-CoV-2 shotgun metagenomic sequencing, especially in low viral load samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Ribosomal , Metagenomics/methods
2.
J Med Virol ; 95(5): e28753, 2023 05.
Article in English | MEDLINE | ID: covidwho-2325314

ABSTRACT

Prompt detection of viral respiratory pathogens is crucial in managing respiratory infection including severe acute respiratory infection (SARI). Metagenomics next-generation sequencing (mNGS) and bioinformatics analyses remain reliable strategies for diagnostic and surveillance purposes. This study evaluated the diagnostic utility of mNGS using multiple analysis tools compared with multiplex real-time PCR for the detection of viral respiratory pathogens in children under 5 years with SARI. Nasopharyngeal swabs collected in viral transport media from 84 children admitted with SARI as per the World Health Organization definition between December 2020 and August 2021 in the Free State Province, South Africa, were used in this study. The obtained specimens were subjected to mNGS using the Illumina MiSeq system, and bioinformatics analysis was performed using three web-based analysis tools; Genome Detective, One Codex and Twist Respiratory Viral Research Panel. With average reads of 211323, mNGS detected viral pathogens in 82 (97.6%) of the 84 patients. Viral aetiologies were established in nine previously undetected/missed cases with an additional bacterial aetiology (Neisseria meningitidis) detected in one patient. Furthermore, mNGS enabled the much needed viral genotypic and subtype differentiation and provided significant information on bacterial co-infection despite enrichment for RNA viruses. Sequences of nonhuman viruses, bacteriophages, and endogenous retrovirus K113 (constituting the respiratory virome) were also uncovered. Notably, mNGS had lower detectability rate for severe acute respiratory syndrome coronavirus 2 (missing 18/32 cases). This study suggests that mNGS, combined with multiple/improved bioinformatics tools, is practically feasible for increased viral and bacterial pathogen detection in SARI, especially in cases where no aetiological agent could be identified by available traditional methods.


Subject(s)
Bacterial Infections , COVID-19 , RNA Viruses , Viruses , Humans , Child , Child, Preschool , RNA, Viral/genetics , South Africa , Viruses/genetics , RNA Viruses/genetics , Bacteria/genetics , Metagenomics/methods , High-Throughput Nucleotide Sequencing/methods , Sensitivity and Specificity
3.
Nat Commun ; 13(1): 6806, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117247

ABSTRACT

Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/microbiology , Post-Acute COVID-19 Syndrome
4.
Genomics ; 114(4): 110414, 2022 07.
Article in English | MEDLINE | ID: covidwho-1895509

ABSTRACT

Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the taxonomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particularly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classification of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280 RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus taxonomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.


Subject(s)
COVID-19 , Viruses , Humans , Metagenome , Metagenomics/methods , Phylogeny , SARS-CoV-2/genetics , Viruses/genetics
5.
Nat Microbiol ; 7(4): 486-496, 2022 04.
Article in English | MEDLINE | ID: covidwho-1773980

ABSTRACT

Lessons learnt from the COVID-19 pandemic include increased awareness of the potential for zoonoses and emerging infectious diseases that can adversely affect human health. Although emergent viruses are currently in the spotlight, we must not forget the ongoing toll of morbidity and mortality owing to antimicrobial resistance in bacterial pathogens and to vector-borne, foodborne and waterborne diseases. Population growth, planetary change, international travel and medical tourism all contribute to the increasing frequency of infectious disease outbreaks. Surveillance is therefore of crucial importance, but the diversity of microbial pathogens, coupled with resource-intensive methods, compromises our ability to scale-up such efforts. Innovative technologies that are both easy to use and able to simultaneously identify diverse microorganisms (viral, bacterial or fungal) with precision are necessary to enable informed public health decisions. Metagenomics-enabled surveillance methods offer the opportunity to improve detection of both known and yet-to-emerge pathogens.


Subject(s)
COVID-19 , Viruses , Animals , Humans , Metagenomics/methods , Pandemics , Viruses/genetics , Zoonoses
6.
Commun Biol ; 5(1): 151, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1708032

ABSTRACT

A large gap remains between sequencing a microbial community and characterizing all of the organisms inside of it. Here we develop a novel method to taxonomically bin metagenomic assemblies through alignment of contigs against a reference database. We show that this workflow, BugSplit, bins metagenome-assembled contigs to species with a 33% absolute improvement in F1-score when compared to alternative tools. We perform nanopore mNGS on patients with COVID-19, and using a reference database predating COVID-19, demonstrate that BugSplit's taxonomic binning enables sensitive and specific detection of a novel coronavirus not possible with other approaches. When applied to nanopore mNGS data from cases of Klebsiella pneumoniae and Neisseria gonorrhoeae infection, BugSplit's taxonomic binning accurately separates pathogen sequences from those of the host and microbiota, and unlocks the possibility of sequence typing, in silico serotyping, and antimicrobial resistance prediction of each organism within a sample. BugSplit is available at https://bugseq.com/academic .


Subject(s)
Algorithms , Bacteria/genetics , Computational Biology/methods , Metagenome/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Bacteria/classification , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Internet , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology
7.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1662709

ABSTRACT

The human body is colonized by a wide range of microorganisms. The field of viromics has expanded since the first reports on the detection of viruses via metagenomic sequencing in 2002. With the continued development of reference materials and databases, viral metagenomic approaches have been used to explore known components of the virome and discover new viruses from various types of samples. The virome has attracted substantial interest since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Increasing numbers of studies and review articles have documented the diverse virome in various sites in the human body, as well as interactions between the human host and the virome with regard to health and disease. However, there have been few studies of direct causal relationships. Viral metagenomic analyses often lack standard references and are potentially subject to bias. Moreover, most virome-related review articles have focused on the gut virome and did not investigate the roles of the virome in other sites of the body in human disease. This review presents an overview of viral metagenomics, with updates regarding the relations between alterations in the human virome and the pathogenesis of human diseases, recent findings related to COVID-19, and therapeutic applications related to the human virome.


Subject(s)
Gastrointestinal Microbiome/genetics , Metagenome , Metagenomics/methods , Virome/genetics , Virus Diseases/drug therapy , Animals , COVID-19/therapy , Humans , Mice , Obesity/complications , SARS-CoV-2/genetics , Virus Diseases/therapy , Viruses/classification , Viruses/genetics
8.
Genes Genet Syst ; 96(4): 165-176, 2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1574597

ABSTRACT

In genetics and related fields, huge amounts of data, such as genome sequences, are accumulating, and the use of artificial intelligence (AI) suitable for big data analysis has become increasingly important. Unsupervised AI that can reveal novel knowledge from big data without prior knowledge or particular models is highly desirable for analyses of genome sequences, particularly for obtaining unexpected insights. We have developed a batch-learning self-organizing map (BLSOM) for oligonucleotide compositions that can reveal various novel genome characteristics. Here, we explain the data mining by the BLSOM: an unsupervised AI. As a specific target, we first selected SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) because a large number of viral genome sequences have been accumulated via worldwide efforts. We analyzed more than 0.6 million sequences collected primarily in the first year of the pandemic. BLSOMs for short oligonucleotides (e.g., 4-6-mers) allowed separation into known clades, but longer oligonucleotides further increased the separation ability and revealed subgrouping within known clades. In the case of 15-mers, there is mostly one copy in the genome; thus, 15-mers that appeared after the epidemic started could be connected to mutations, and the BLSOM for 15-mers revealed the mutations that contributed to separation into known clades and their subgroups. After introducing the detailed methodological strategies, we explain BLSOMs for various topics, such as the tetranucleotide BLSOM for over 5 million 5-kb fragment sequences derived from almost all microorganisms currently available and its use in metagenome studies. We also explain BLSOMs for various eukaryotes, including fishes, frogs and Drosophila species, and found a high separation ability among closely related species. When analyzing the human genome, we found enrichments in transcription factor-binding sequences in centromeric and pericentromeric heterochromatin regions. The tDNAs (tRNA genes) could be separated according to their corresponding amino acid.


Subject(s)
Artificial Intelligence , Computational Biology/methods , Genome, Human , Genome, Viral , SARS-CoV-2/genetics , Cluster Analysis , Codon Usage , Humans , Metagenomics/methods , Mutation , RNA, Transfer , Time Factors
9.
NPJ Biofilms Microbiomes ; 7(1): 81, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1526078

ABSTRACT

The oral microbiome has been connected with lung health and may be of significance in the progression of SARS-CoV-2 infection. Saliva-based SARS-CoV-2 tests provide the opportunity to leverage stored samples for assessing the oral microbiome. However, these collection kits have not been tested for their accuracy in measuring the oral microbiome. Saliva is highly enriched with human DNA and reducing it prior to shotgun sequencing may increase the depth of bacterial reads. We examined both the effect of saliva collection method and sequence processing on measurement of microbiome depth and diversity by 16S rRNA gene amplicon and shotgun metagenomics. We collected 56 samples from 22 subjects. Each subject provided saliva samples with and without preservative, and a subset provided a second set of samples the following day. 16S rRNA gene (V4) sequencing was performed on all samples, and shotgun metagenomics was performed on a subset of samples collected with preservative with and without human DNA depletion before sequencing. We observed that the beta diversity distances within subjects over time was smaller than between unrelated subjects, and distances within subjects were smaller in samples collected with preservative. Samples collected with preservative had higher alpha diversity measuring both richness and evenness. Human DNA depletion before extraction and shotgun sequencing yielded higher total and relative reads mapping to bacterial sequences. We conclude that collecting saliva with preservative may provide more consistent measures of the oral microbiome and depleting human DNA increases yield of bacterial sequences.


Subject(s)
Microbiota/genetics , Saliva/microbiology , Adult , Bacteria/genetics , COVID-19/genetics , DNA/genetics , DNA, Bacterial/genetics , Female , Humans , Male , Metagenome/genetics , Metagenomics/methods , Middle Aged , RNA, Ribosomal, 16S/genetics , SARS-CoV-2/pathogenicity , Sequence Analysis, DNA/methods
10.
Viruses ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: covidwho-1460085

ABSTRACT

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


Subject(s)
Alphacoronavirus/isolation & purification , Betacoronavirus/isolation & purification , Chiroptera/virology , Genome, Viral/genetics , Metagenome/genetics , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , Chiroptera/genetics , Computational Biology/methods , Feces/virology , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Moscow , Phycodnaviridae/classification , Phycodnaviridae/genetics , Phycodnaviridae/isolation & purification , Sequence Analysis, DNA
11.
Expert Rev Mol Diagn ; 21(11): 1139-1146, 2021 11.
Article in English | MEDLINE | ID: covidwho-1450340

ABSTRACT

INTRODUCTION: Meningoencephalitis patients are often severely impaired and benefit from early etiological diagnosis, though many cases remain without identified cause. Metagenomics as pathogen agnostic approach can result in additional etiological findings; however, the exact diagnostic yield when used as a secondary test remains unknown. AREAS COVERED: This review aims to highlight recent advances with regard to wet and dry lab methodologies of metagenomic testing and technical milestones that have been achieved. A selection of procedures currently applied in accredited diagnostic laboratories is described in more detail to illustrate best practices. Furthermore, a meta-analysis was performed to assess the additional diagnostic yield utilizing metagenomic sequencing in meningoencephalitis patients. Finally, the remaining challenges for successful widespread implementation of metagenomic sequencing for the diagnosis of meningoencephalitis are addressed in a future perspective. EXPERT OPINION: The last decade has shown major advances in technical possibilities for using mNGS in diagnostic settings including cloud-based analysis. An additional advance may be the current established infrastructure of platforms for bioinformatic analysis of SARS-CoV-2, which may assist to pave the way for global use of clinical metagenomics.


Subject(s)
Genome, Viral/genetics , Meningoencephalitis/diagnosis , Meningoencephalitis/virology , Metagenome/genetics , Diagnostic Tests, Routine , Humans , Metagenomics/methods
12.
Microbiol Spectr ; 9(2): e0019721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1381169

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic variants that may alter viral fitness highlights the urgency of widespread next-generation sequencing (NGS) surveillance. To profile genetic variants of the entire SARS-CoV-2 genome, we developed and clinically validated a hybridization capture SARS-CoV-2 NGS assay, integrating novel methods for panel design using double-stranded DNA (dsDNA) biotin-labeled probes, and built accompanying software. This test is the first hybrid capture-based NGS assay given Food and Drug Administration (FDA) emergency use authorization for detection of the SARS-CoV-2 virus. The positive and negative percent agreement (PPA and NPA, respectively) were defined in comparison to the results for an orthogonal real-time reverse transcription polymerase chain reaction (RT-PCR) assay (PPA and NPA, 96.7 and 100%, respectively). The limit of detection was established to be 800 copies/ml with an average fold enrichment of 46,791. Furthermore, utilizing the research-use-only analysis to profile the variants, we identified 55 novel mutations, including 11 in the functionally important spike protein. Finally, we profiled the full nasopharyngeal microbiome using metagenomics and found overrepresentation of 7 taxa and evidence of macrolide resistance in SARS-CoV-2-positive patients. This hybrid capture NGS assay, coupled with optimized software, is a powerful approach to detect and comprehensively map SARS-CoV-2 genetic variants for tracking viral evolution and guiding vaccine updates. IMPORTANCE This is the first FDA emergency-use-authorized hybridization capture-based next-generation sequencing (NGS) assay to detect the SARS-CoV-2 genome. Viral metagenomics and the novel hybrid capture NGS-based assay, along with its research-use-only analysis, can provide important genetic insights into SARS-CoV-2 and other emerging pathogens and improve surveillance and early detection, potentially preventing or mitigating new outbreaks. Better understanding of the continuously evolving SARS-CoV-2 viral genome and the impact of genetic variants may provide individual risk stratification, precision therapeutic options, improved molecular diagnostics, and population-based therapeutic solutions.


Subject(s)
Genetic Variation/genetics , Genome, Viral/genetics , Microbiota/genetics , Nasopharynx/microbiology , SARS-CoV-2/genetics , Anti-Bacterial Agents/pharmacology , COVID-19/pathology , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Macrolides/pharmacology , Metagenomics/methods , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification
14.
PLoS One ; 16(6): e0252534, 2021.
Article in English | MEDLINE | ID: covidwho-1270459

ABSTRACT

Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.


Subject(s)
Chiroptera/virology , Feces/virology , Metagenomics/methods , Virome/genetics , Viruses/genetics , Zoonoses/virology , Adenoviridae/classification , Adenoviridae/genetics , Animals , Chiroptera/classification , Disease Reservoirs/virology , Genetic Variation , Genome, Viral/genetics , Hepevirus/classification , Hepevirus/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Rotavirus/classification , Rotavirus/genetics , Sequence Analysis, DNA/methods , Switzerland , Viruses/classification
15.
OMICS ; 25(6): 336-341, 2021 06.
Article in English | MEDLINE | ID: covidwho-1243454

ABSTRACT

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak demonstrates the potential of coronaviruses, especially bat-derived beta coronaviruses to rapidly escalate to a global pandemic that has caused deaths in the order of several millions already. The huge efforts put in place by the scientific community to address this emergency have disclosed how the implementation of new technologies is crucial in the prepandemic period to timely face future ecological crises. In this context, we argue that metagenomics and new approaches to understanding ecosystems and biodiversity offer veritable prospects to innovate therapeutics and diagnostics against novel and existing infectious agents. We discuss the opportunities and challenges associated with the science of metagenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century.


Subject(s)
COVID-19 Drug Treatment , COVID-19/diagnosis , Pandemics/prevention & control , Animals , Ecosystem , Humans , Metagenomics/methods , SARS-CoV-2/drug effects
16.
Cell ; 184(10): 2532-2534, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1229877

ABSTRACT

In this issue of Cell, Washington et al. and Alpert et al. demonstrate the value of genomic surveillance when studying the introduction of the B.1.1.7 variant to the US and illustrate the challenge that results from the lack of good sampling strategies.


Subject(s)
COVID-19/epidemiology , Communicable Diseases, Emerging/epidemiology , Epidemiological Monitoring , Metagenomics/methods , SARS-CoV-2/isolation & purification , COVID-19/virology , Communicable Diseases, Emerging/virology , Humans , SARS-CoV-2/genetics , United States/epidemiology
17.
J Med Virol ; 93(3): 1786-1791, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196491

ABSTRACT

Pangolin metagenomic data obtained from public databases were used to assemble partial or complete viral genomes showing genetic relationship to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Sendai virus, flavivirus, picornavirus, parvovirus, and genomovirus, respectively. Most of these virus genomes showed genomic recombination signals. Phylogeny based on the SARS-CoV-2-related virus sequences assembled in this study and those recently published indicated that pangolin SARS-CoV-2-related viruses were clustered into two sub-lineages according to geographic sampling sites. These findings suggest the need for further pangolin samples, from different countries, to be collected and analyzed for coronavirus to elucidate whether pangolins are intermittent hosts for SARS-CoV-2.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Metagenome/genetics , Pangolins/virology , SARS-CoV-2/genetics , Animals , Host Specificity/genetics , Metagenomics/methods , Phylogeny , Recombination, Genetic/genetics
18.
Nat Rev Microbiol ; 19(6): 345, 2021 06.
Article in English | MEDLINE | ID: covidwho-1180248
19.
Gigascience ; 9(10)2020 10 15.
Article in English | MEDLINE | ID: covidwho-1109233

ABSTRACT

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has enabled the rapid, unbiased detection and identification of microbes without pathogen-specific reagents, culturing, or a priori knowledge of the microbial landscape. mNGS data analysis requires a series of computationally intensive processing steps to accurately determine the microbial composition of a sample. Existing mNGS data analysis tools typically require bioinformatics expertise and access to local server-class hardware resources. For many research laboratories, this presents an obstacle, especially in resource-limited environments. FINDINGS: We present IDseq, an open source cloud-based metagenomics pipeline and service for global pathogen detection and monitoring (https://idseq.net). The IDseq Portal accepts raw mNGS data, performs host and quality filtration steps, then executes an assembly-based alignment pipeline, which results in the assignment of reads and contigs to taxonomic categories. The taxonomic relative abundances are reported and visualized in an easy-to-use web application to facilitate data interpretation and hypothesis generation. Furthermore, IDseq supports environmental background model generation and automatic internal spike-in control recognition, providing statistics that are critical for data interpretation. IDseq was designed with the specific intent of detecting novel pathogens. Here, we benchmark novel virus detection capability using both synthetically evolved viral sequences and real-world samples, including IDseq analysis of a nasopharyngeal swab sample acquired and processed locally in Cambodia from a tourist from Wuhan, China, infected with the recently emergent SARS-CoV-2. CONCLUSION: The IDseq Portal reduces the barrier to entry for mNGS data analysis and enables bench scientists, clinicians, and bioinformaticians to gain insight from mNGS datasets for both known and novel pathogens.


Subject(s)
Betacoronavirus/genetics , Cloud Computing , Coronavirus Infections/virology , Metagenome , Metagenomics/methods , Pneumonia, Viral/virology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnosis , Databases, Genetic , High-Throughput Nucleotide Sequencing/methods , Humans , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Software
20.
Nat Mater ; 20(5): 593-605, 2021 05.
Article in English | MEDLINE | ID: covidwho-1085425

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every corner of the globe, causing societal instability. The resultant coronavirus disease 2019 (COVID-19) leads to fever, sore throat, cough, chest and muscle pain, dyspnoea, confusion, anosmia, ageusia and headache. These can progress to life-threatening respiratory insufficiency, also affecting the heart, kidney, liver and nervous systems. The diagnosis of SARS-CoV-2 infection is often confused with that of influenza and seasonal upper respiratory tract viral infections. Due to available treatment strategies and required containments, rapid diagnosis is mandated. This Review brings clarity to the rapidly growing body of available and in-development diagnostic tests, including nanomaterial-based tools. It serves as a resource guide for scientists, physicians, students and the public at large.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral/blood , Antigens, Viral/analysis , Brain/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Lung/diagnostic imaging , Metagenomics/methods , Nanostructures , Nanotechnology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL